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Abstract

The resonant sound transmission has been regarded to be negligible in finite single partitions compared
to the non-resonant transmission. In this study, the sound transmission coefficient is reconsidered by using
the general modal expansion method in order to estimate the contribution of resonant components to the
whole sound transmission at frequency bands below the coincidence frequency. By investigating the
band-average difference between the total and non-resonant transmission losses, the validity of the
aforementioned assumption is discussed. In the analysis, the participation factor comprised of size,
thickness, and loss factor is employed. Based on this factor, the valid range of neglecting the resonant sound
transmission is proposed, in which the inclusion of the resonant component makes difference being less
than 1 dB.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The transmission of sound through plate-like partitions has been studied by a number of
researchers. However, most of works has dealt with infinite partitions, while the deviations
of measured transmission loss data from predicted results could be observed even in the case of
single leaf partitions. The major causes of discrepancies between theory and measurement are the
finiteness and mounting (or boundary) conditions, and the non-diffuseness of test room. In
relation to the non-diffuseness, the concept of limit angle has been introduced [1] and the
predicted result in general agrees well with experimental one. However, as many researchers have
pointed out, the limit angle is usually chosen arbitrarily and, in the case of multiple panels, the
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predicted results are quite sensitive to the change of the limit angle value. In this regard, Kang
et al. [2] introduced the directional weighting function for incidence energy, which made the
prediction very accurate compared to the field incidence calculations.
For finite panels, Sewell [3] obtained a complete solution using the classical modal expansion

method that appreciably improves the prediction accuracy relative to the mass law. However,
due to the fact that the forced transmission is considered only, the formula always over-
estimates the transmission loss. This feature was fully discussed by other authors [4,5] in
connection with various experimental results. In regard to the same problem, Leppington et al.
[6] presented an improved estimate below coincidence and overcame the frequency limitations
in predicting the forced transmission. They also quantified the resonant transmission, from
which the total transmission coefficient agreed better with the measured results than the
previous methods at frequencies just below the coincidence frequency and at lower
frequencies.
The radiation impedance of partition is one of the important factors in sound transmission and

its evaluation is essential in the prediction. Area independent radiation impedance of an infinite
panel is one of the inherent causes of discrepancy with experiments, because real partitions are
definitely finite anyway. When the finite partitions are concerned, there occurs a sudden rise in
radiation efficiency curve due to the fact that the edge modes are dominant at frequencies just
below the coincidence frequency and the relative contribution of resonant transmission also
increases. Thus, the sound transmission loss predicted either by infinite theory or non-resonant
transmission generally overestimates in this frequency region.
A majority of researchers have assumed a negligible contribution from the resonant

transmission, based on the fact that the radiation efficiencies of resonant modes are relatively
small in comparison with the internal loss factors [3,5,7]. This might be true for most of cases,
although some researchers have shown that the role of resonant transmission should not be
neglected in some cases [6,8,9]. However, this is mainly due to the fact that there were few
quantitative investigations on the relative contribution of the resonant transmission component.
Takahashi [9] calculated the relative contribution of resonant components in sound transmission
through a single partition, which was defined as the ratio of the resonant sound transmission
coefficient to the non-resonant one. It was noted that, at frequencies well below the coincidence
frequency, even a single resonance may affect the total transmission, in which the extent of
influence depends strongly on the panel damping. However, because the relative contribution also
depends on other parameters such as the thickness and the size, a contribution analysis including
the effect of those factors is required and the validity of the assumption of a negligible
contribution from the resonant transmission should be investigated in connection with the
structural parameters, from which the effect on sound transmission loss should be investigated
quantitatively.
In this study, the sound transmission of a rectangular panel in an infinite rigid baffle is revisited

by utilizing the general modal expansion method and the relative contribution of resonant
transmission is investigated at frequency bands below the coincidence frequency. In the analysis,
the transmission coefficients are averaged over a frequency band and its approximate expressions
at the center frequency are explicitly presented for further numerical calculations. From the
relative contribution of resonant transmission, the validity of neglect of resonant transmission
components is investigated. Additionally, the validity of determining the sample size together with
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the thickness and damping factor is also discussed, referring to the general guidelines in the usual
sound insulation tests.

2. Background theory

2.1. Sound transmission loss

Consider a simply supported rectangular panel (0oxolx; 0oyoly) in an infinite rigid baffle as
shown in Fig. 1. The rectangular co-ordinates are chosen setting z as normal to the panel:
r ¼ ðx; y; zÞ represents the position vector of a field point and x ¼ ðx; y; 0Þ is the position vector of
a surface point on the panel. The normal velocity, vðxÞ; vibrating with a time harmonic frequency
o satisfies

ðDr4 � rsho
2Þ � vðxÞ ¼ jo½p1ðrÞ � p2ðrÞ�z¼0; ð1Þ

where rs and h are mass density and thickness of partition, D means the flexural rigidity given by
Eh3=12ð1� n2Þ; and E and n being Young’s modulus and the Poisson ratio, respectively. The
common time factor expðjotÞ will be omitted hereafter for simplicity. In Eq. (1), p1 and p2 are
sound pressure in incident and transmitted field, respectively, which satisfy the wave equation and
can be expressed in the integral equation form as

p1ðrÞ ¼ 2pi � 2

Z
S

gðrjr0Þ �
@p1ðr0Þ
@z

����
z¼0

dr0; ð2aÞ

p2ðrÞ ¼ 2

Z
S

gðrjr0Þ �
@p2ðr0Þ
@z

����
z¼0

dr0; ð2bÞ
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Fig. 1. Geometrical definition of co-ordinates and dimensions of the rectangular partition in an infinite rigid baffle.
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where pið¼ exp½�jðkxx þ kyy þ kzzÞ�Þ denotes the plane incident pressure, S is panel surface area,
k the wave number, and gðrjr0Þ the Green function.
In order to solve Eq. (1) by using the general modal expansion method, the modal function of

normal velocity, cmn is adopted, which satisfy the following orthonormality:Z
S

cmnðxÞcqrðxÞ dx ¼ dmqdnr: ð3Þ

Here, dmq and dnr are the Kronecker delta and m; n; q; r are mode indices. All variables in Eq. (1)
can be expanded by the panel modes, cmn; as

½Dk4
mn � rsho

2� � vmn � 2jo
X
q;r

Rmnqr � vqr ¼ 2jopi;mn; ð4Þ

where kmn is the eigenvalue of Eq. (1). By expanding the radiated sound pressure in Eq. (2), one
can obtain the radiation impedance, Rmnqr; which is given by

Rmnqr ¼ 2jor0

Z
S

Z
S0

gðxjx0Þ � cqrðx
0ÞcmnðxÞ dx

0 dx: ð5Þ

Eq. (5) can be also expressed as Rmnqr ¼ r0c0ðymnqr þ jwmnqrÞ; in which r0 and c0 mean the density
and the speed of sound in air, respectively, and ymnqr is often referred as the radiation resistance.
In Eq. (4), the normal velocity, vðxÞ; and the incident pressure, pi; are expanded by using the
modal functions as

vðxÞ ¼
X
m;n

vmncmnðxÞ; pi ¼
X
m;n

pi;mncmnðxÞ: ð6a;bÞ

Eq. (4) contains the inter-modal coupling terms (Rmnqr for maq or nar). The leading effects of
the inter-modal couplings are the shift of resonance frequencies and the increase in internal
damping, while its influence on the vibrational amplitude is not severe. Because the band-averaged
characteristics of vibration response and the resulting sound transmission are of interest in this
work, the exact locations of resonance are not of concern. About the effects of inter-modal
couplings, some previous research results reveal that they are not significant [9,10]. If the inter-
modal coupling terms are neglected, the modal coefficient is reduced to

vmn ¼
1

rsh

2jopi;mn

½ðoe
mnÞ

2 � o2� þ jZe
mno2

mn

; ð7Þ

where oe
mn and Ze

mn indicate fluid loaded resonant frequency and effective loss factor, respectively,
that are given by

ðoe
mnÞ

2 ¼ o2
mn � 2

r0c0
rsh

� �
owmn; Ze

mn ¼ Zþ 2
r0c0
rsh

� �
o

ymn

o2
mn

: ð8a;bÞ

Here, omn means the in-vacuo resonance frequency of the panel and ymn means the self-radiation
resistance, which is often referred as the modal radiation efficiency. The radiated sound power can
be obtained as follows:

Pt ¼ 1
2
Re

Z
S

p2 � v� dS

� �
¼ 1

2
Re

X
m;n

X
q;r

Rmnqrvqrv
�
mn

( )
: ð9Þ
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Regarding the effects of coupled terms in the case of sound radiation into a free space (Rmnqr for
maq or nar), Davies [10] found that the coupling effect in sound radiation could be neglected
provided that the frequency spacing is larger than the effective width of resonances and the
structural damping is small. Although the coupling effects could be strong for the non-resonant
sound radiation of the first few modes, the coupling terms are not significant as concluded in the
previous works [9,10]. Excluding the coupled terms, the radiated sound power can be reexpressed
as

Pt ¼
1

2

X
m;n

r0c0ymn

Ymn

rsh

����
����
2

�jpi;mnj
2; ð10Þ

where Ymn=ðrshÞ denotes the velocity admittance function and Ymn is given by

Ymn ¼ 2jo½fðoe
mnÞ

2 � o2g þ jZe
mno

2
mn�

�1: ð11Þ

Because the average of jpi;mnj
2 over all incidence angles is related to the modal radiation efficiency

as

1

p

Z 2p

0

Z p=2

0

jpi;mnj2sin y dy df ¼
4pc20
o2

� ymn; ð12Þ

one can derive, using the angular expression of incident power, Pi; as S cos y=2r0c0; the random
incidence sound transmission coefficient, t; as follows:

tðoÞ ¼
pc20
S

2r0c0
rsho

� �2X
m;n

y2mnjYmnj2: ð13Þ

By averaging Eq. (13) over a frequency band of oloooou; the average sound transmission
coefficient is obtained as

%t ¼
1

Do
pc20
S

Z ou

ol

2r0c0
rsho

� �2

�
X
m;n

y2mnjYmnj2
 !

do; ð14Þ

where Do denotes the frequency bandwidth. Here, the validity of the neglect of the inter-modal
coupling effects can be easily done by detailed numerical calculations. The inter-modal coupling
terms can be included in the mathematical model of Eqs. (5) and (9), which is similar to Davies’
derivation procedure [10]. However, the differences in TL due to neglecting the inter-modal
coupling terms are very small: for example, for a 3-mm-thick glass window of 0.56� 1.68m2 in
size, the difference in TL is less than 0.1 dB at the frequency bands of interest.

2.2. Classification of transmission components

It is well known that the sound transmission through a partition can be decomposed into two
components: resonant and non-resonant transmission. Sound transmission by the modes, of
which the resonance frequencies are within the frequency band of interest, is called the resonant
transmission, whereas the non-resonant transmission is owing to the modes resonant outside the
interested band [8,9]. The resonant sound transmission is caused by the interference between the
multiply reflected waves from boundaries, travelling with free wave speed, and the bounded
partition modes. The non-resonant sound transmission is associated with the response of the
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partition, in which the waves are forced to propagate with the trace wave speed of the incident
wave. Consequently, the former is prone to be controlled by the damping, but the latter is not.
Whether a mode is resonant or not should be determined in relation to the locations of resonance
as well as the effective bandwidth of the mode. That is, if the bandwidth of a mode overlaps the
frequency band under consideration, the mode should be regarded as being resonant. The two
components can be classified by dividing the summation in Eq. (14) into two parts. Fig. 2 shows
the velocity admittance functions and radiation efficiencies, which are principal factors in sound
transmission, of several modes of a 2-mm-thick steel panel of 1.5� 1.5m2 that are resonant in the
1/3-octave band centered at 500Hz. Characteristics of non-resonant modes in the same band are
depicted in Fig. 3. As shown in Fig. 2, resonant modes have low values of radiation efficiency.
However, the values of velocity admittance are higher than those of non-resonant modes,
although they depend on the structural damping.

2.2.1. Resonant transmission

Direct calculation of Eq. (14) enables the quantification of the relative contribution from the
two transmission components. However, it is actually a laborious and time-consuming job,
especially in the case of high modal density, and thus the approximate expressions would be more
useful in estimating such contribution. For resonant components, the fact that the radiation
efficiency is slowly varying with frequency can be exploited: Eq. (14) can be approximately
rewritten as

%trD
1

Do
pc20
S

X
m;n

2r0c0
rshoc

� �2

y2mn;c

Z ou

ol

jYmnj
2 do; ð15Þ
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Fig. 2. Velocity admittance functions and radiation efficiencies for several resonant modes at 500Hz band. Bracketed

number indicates the mode index. (a) Admittance function, Ymn and (b) modal radiation efficiency, ymn:
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where subscript ‘c’ indicates the value at the center frequency of a band and the summation is
done only for the resonant modes. Actually, there occurs error due to the assumption of the
slowly varying radiation efficiency, however, it can be easily shown that the errors decreases as the
mode count increases and an acceptable range can be defined by restricting the frequency region.
That is to say, the validity of Eq. (15) is related with the number of modes in a band considered.
The reasonable approximation of the integration is 2p=Ze

mnomn provided that there are at least
several resonant modes within the frequency band of interest [11]. The resonant sound
transmission coefficient can be further approximated as follows:

%trD
1

Do
pc20
S

2r0c0
rshoc

� �2X
m;n

2py2mn;c

Ze
mnomn

D
1

Do
pc20
S

2r0c0
rshoc

� �2
2p
Ze

coc

X
m;n

y2mn;c: ð16Þ

When at least several modes exist in the band, the summation can be replaced by integration and
can be approximated as X

m;n

y2mn;cDDNy2c ; ð17Þ

where DN means the mode count of that band and y2c ; the average of the square of modal
radiation efficiency, approximated by the integration, is given by [6]

y2c ¼
l2x þ l2y

pðkSÞ2
a2

ð1� aÞ3
½ð5� 4aÞsin�1ða1=2Þ þ ð3� 2aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ

p
�; ð18Þ

where a is oc=oco with oco being the coincidence frequency. Then, Eq. (16) becomes

%trD
2p2c20

S

2r0c0
rshoc

� �2
nðoÞy2c
Ze

coc

; ð19Þ
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where nðoÞ means the modal density of partition, which is given by, for the case of a rectangular
panel,

ffiffiffi
3

p
S=2phcL with cL being the velocity of longitudinal wave. Finally, the resonant

transmission coefficient can be approximately expressed as

%trD
p
2

2r0c0
rshoc

� �2 oco

oc

� �
y2c
Ze

c

 !
; ð20Þ

which has similar form with previous results obtained from energy considerations [12,13].
Regarding the rationality of Eq. (20), Fig. 4 shows a typical example of differences between
calculated values by Eqs. (14) and (20) for a 3-mm-thick single glass pane of two different sizes. It
can be seen that the errors decreases as the area increases, that is, as the mode count increases.
Therefore, provided that there are at least several resonant modes within the frequency band of
interest, Eq. (20) can be regarded as a reasonable approximation for the resonant components in
Eq. (14).

2.2.2. Non-resonant transmission

Regarding the non-resonant sound transmission, the well-known Sewell’s work [3] is adopted in
this work, because the derivation procedures are basically identical with performing the
integration in Eq. (14) for non-resonant modes. Here, the Sewell’s formula [3] is used with slight
modification of excluding some terms that contributes very small amount as follows:

%tnD
2r0c0
rshoc

� �2

1�
o2

c

o2
co

� ��2

ln½kc

ffiffiffiffi
S

p
�: ð21Þ

Although a modification to Sewell’s formula is available [6], which improves the estimates of TL
at frequencies above 0:5oco; the results at frequencies below 0:5oco are almost same. Reflecting the
fact that the effects of panel size and the role of resonant transmission in the low frequency range
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are more prominent in general, Sewell’s formula is sufficient for the present study. Here, it should
be noticed that Eq. (21) is generally applicable to frequencies below 0:5oco:

2.3. Relative contributions

From Eqs. (20) and (21), the ratio between resonant and non-resonant transmission is given by

%tr

%tn

¼
p
2

oco

oc

� �
1�

o2
c

o2
co

� ��2
1

ln½kc

ffiffiffiffi
S

p
�

%y2

Ze
c

� �
: ð22Þ

Fig. 5 shows a comparison of the calculated contributions of resonant and non-resonant
transmission by using Eq. (14) and the approximated expression given by Eq. (22), for various
steel panels of different size having the same thickness. Here, one can observe that the lowest
frequency bands having the mode count more than 5 are 200, 100, and 50Hz band for the panel of
0.8� 0.8, 1.2� 1.2, and 1.6� 1.6m2, respectively. It should be reminded that the condition of
mode count more than 5 is the necessary condition for validating the approximations in Eq. (16).
Because, at very low frequency bands, the existence of even a single resonant mode can affect the
total transmission significantly [9], Eq. (22) just yields an averaged trend only, especially for the
panel of 0.8� 0.8m2. Here, it should be noticed that the partition has been assumed as simply
supported at edges. Since most of partitions are mounted firmly, the clamped end is probably
more realistic, while the clamped edge makes the mathematical analysis to be complicated. The
edge condition has been known to change the radiation characteristics, which can be represented
by the radiation efficiency, as well as the vibration response. From detailed analysis, some
researchers have shown that the radiation efficiency of a clamped partition is twice that of a
simply supported partition at frequencies below the coincidence [14,15]. From the facts that the
non-resonant transmission is less sensitive to edge conditions than resonant component and that
resonant transmission is proportional to the square of the radiation efficiency as can be seen in
Eq. (20), the relative contribution of resonant transmission should be lager than depicted values in
Fig. 5. However, the actual edge conditions are in between clamped and simply supported
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boundary conditions, and the increase of radiation efficiency is hard to be quantified accurately.
Due to these features, the edge is assumed to be simply supported in this study, which can offer a
basic guide.

3. Results

In order to investigate the effects of physical parameters such as size, thickness, and damping,
the following non-dimensional factor is employed in this study:

f ¼
SZe

h2
: ð23Þ

This parameter was presented originally by Pope [8], which was called the ‘‘participation factor’’.
The physical basis for choosing such a parameter was on the concept of both wave numbers and
frequency matching: however, further detailed physical interpretation can be given from the
consideration of sound transmission mechanism. Eq. (23) can be expressed as

f ¼
Ze

ðh=lxÞðh=lyÞ
: ð24Þ

Here, reflecting the fact that the added mass by the fluid loading is proportional to r0l [16], the
ratio, h=l in the denominator can be said to represent a ratio of the mass inertia of partition to the
fluid loading. Thus, the participation factor in Eq. (23) is an important, representative parameter
that relates the three basic energy transmission mechanisms: mass inertia, fluid loading, and
energy loss. Fig. 6 depicts the variation of the ratio of resonant and non-resonant transmission
coefficient by varying the participation factor in Eq. (23), i.e., changing the involved parameters,
for a glass window (rs ¼ 2400 kg/m3, E ¼ 7:0� 1010 Pa) and a steel panel (rs ¼ 7700 kg/m3,
E ¼ 19:5� 1010 Pa). In these figures, results for a glass and a steel panel are slightly different,
because the relative importance of each sound transmission mechanism is also influenced from the
other physical parameters of partitions; nevertheless, the general trend is almost same. One can
find that the relative contribution of resonant transmission to the overall value is inversely
proportional to the logarithm of the participation factor. It should be mentioned that there exists
an uncertainty in determining the loss factor and, thus, one can only assume the values
appropriately at prediction stage, if measured values were not available. It is true that the second
term in Eq. 8(b) is sufficiently small and Ze can be approximated by the internal loss factor,
but it would be more reasonable and practical to assume the total loss factor including edge
losses for Ze:
In Fig. 7, the difference between the total transmission loss ðTLt¼ �10 log10ðtn þ trÞÞ and the

non-resonant transmission loss ðTLn¼ �10 log10ðtnÞÞ is illustrated as a function of the
participation factor. Although the participation factor in Eq. (23) does not contain any frequency
parameter, the difference in TL values changes along the frequency band when f is applied to the
formulas in Eqs. (14) and (21). Curves in Fig. 7 are displayed with a range: the minimum and
maximum differences depicted by dashed lines correspond to the values for the lowest and highest
frequency bands of interest, respectively, and the solid line depicts the frequency-averaged values.
It should be noticed here that the results are applicable only to frequency bands below 0:5oco and
to frequency bands in which five or more resonant modes exist, which is due to the assumptions
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made in deriving Eq. (22). From this figure, an appropriate range of parameters can be selected,
which guarantees the validity in neglecting the resonant sound transmission in evaluating the total
transmission loss. For example, when the averaged difference in TL, i.e., the prediction error, is to
be smaller than 1 dB, the participation factor should be larger than about 3� 103 on the basis of
minimum value of TL difference in Fig. 7: This implies that the damping factor should be larger
than 1.4� 10�2 for a 3-mm-thick glass of 1.5� 1.25m2 in size. For another example, a 9-mm-
thick glass of the same size but with Ze ¼ 1� 10�2; the transmission loss predicted only from the
non-resonant transmission would be lager than the total transmission loss by 4 dB.
In the guideline of the ISO standard for testing the sound insulation through a partition [17], a

specimen area of 10m2 or larger one is recommended. If a specimen of 1-mm-thick steel panel is
considered, the participation factor is 2� 104 for Z ¼ 2� 10�3; and then the neglect of resonant
sound transmission is definitely valid. However, if the size is 1.5� 1.25m2, which is the
recommended dimension for glass windows, the resonant transmission should be included
depending on the thickness and damping factor. Here, it should be recalled again that the
damping factor in the actual test situation is generally higher than the internal loss factor.
Therefore, it should be said that the current guideline of correlating the measured and predicted
sound transmission loss is not absolutely acceptable and there is a good possibility of discrepancy
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between predicted and measured TL value without carefully checking the physical condition of
test specimen.

4. Conclusions

In this study, the resonant sound transmission coefficient of a finite rectangular panel
in an infinite rigid baffle is revisited and the relative importance of resonant transmission in
the total transmission is investigated at frequency bands below the coincidence frequency.
By investigating the average difference between the total transmission loss and the non-
resonant transmission loss, the validity of neglecting the resonant transmission components
in the prediction of TL is discussed: the analysis is based on the non-dimensional participa-
tion factor, which is composed of size, thickness, and damping factor of the specimen. As a
result, in order to guarantee that the resonant transmission is negligible, the participation
factor should be larger than 3� 103 that yields the discrepancy between measured and predicted
TL value less than 1 dB.
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Fig. 7. Difference between total TL and non-resonant TL: ——, average value; - - - - -, minimum and maximum values.

(a) Glass window and (b) steel panel.
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